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UV–visible absorption spectroscopy with extraterrestrial light sources is a widely used technique for the
measurement of stratospheric and tropospheric trace gases. We focus on differential optical absorption
spectroscopy (DOAS) and present an operator notation as a new formalism to describe the different
processes in the atmosphere and the simplifying assumptions that compose the advantage of DOAS. This
formalism provides tools to classify and reduce possible error sources of DOAS applications. © 2005
Optical Society of America
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1. Introduction

A spectral signal on its way from generation in the
light source through the atmosphere to the instru-
ment experiences many different transformations. In
this paper we introduce a formalism allowing a com-
parison of those transformations and the correspond-
ing features of differential optical absorption
spectroscopy (DOAS).1 In this comparison we espe-
cially aim at the sequencing of the different transfor-
mations, each described by an operator, and identify
some combination of noncommuting operators that
can be assigned to effects such as the I0 effect or the
undersampling problem. Since these effects are based
on different instrument and DOAS parameters, the
classification of the main error sources can be helpful
for the design of new DOAS instruments and to re-
duce the errors of existing DOAS applications.

2. Differential Optical Absorption Spectroscopy

In this section we describe the DOAS method. The
absorption of radiation by matter is described by the
Beer–Lambert law. The absorption of light of the in-
tensity I��� at the wavelength � as it passes through

an absorbing matter dl is

I(�) � I0(�)exp���(�, T)� c(l)dl�. (1)

Here I0��� is the incident light intensity, I��� is the
transmitted light intensity, ���, T� is the absorption
cross section of the absorbing species that depends on
the wavelength and temperature, and c�l� is its con-
centration. Here the first simplifying assumption is
made, namely, the temperature independence of the
absorption cross sections. The cross sections can vary
with altitude and temperature; therefore excluding it
from the integration produces an error. We can re-
duce this error by using several cross sections for
different temperatures, or, if those are linear depen-
dent, by performing a posteriori temperature correc-
tions for known temperature profiles. For most
applications it is sufficient to use the temperature at
the number density maximum of the climatological
profile of the corresponding trace gas.2

When absorptions are measured in the atmo-
sphere, Eq. (1) has to be applied for the absorption of
all trace gases and has to deal with influences of
scattering:

I(�) � I0(�)exp���
i

�i(�)SCDi�g(�). (2)

where the factor g��� describes additional attenua-
tion by the optical system and by Rayleigh and Mie
scattering in the atmosphere and all other broadband
structured influences, such as reflection on the
ground. The sum in the exponential runs over all
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trace gases i in the light path l. The slant column
density (SCD) is defined as

SCDi �� ci(l)dl, (3)

with ci being the concentration of the trace gas i and
l stands for all possible light paths. The effect of
multiple scattering is included in the air-mass factor
(AMF) concept that is described in Section 3. The
absorption cross sections �i��� are well known from
measurements in the laboratory and they are char-
acteristic for each trace gas.

Thus far we can transform Eq. (2) into a linear
system of equations with respect to SCDi by taking
the logarithm of both sides:

ln I(�) � ln I0(�) � ln g(�)��
i

�i(�)SCDi. (4)

The basic drawback of Eq. (4) is that neither the
initial light intensity I0��� nor the attenuation factor
g��� are known exactly, making it impossible to solve
for the desired SCDi. The essential fact that permits
the calculation of SCDi without this knowledge is
that these quantities are subject to only low-
frequency (LF) variations with respect to � whereas
the absorption cross sections �i��� contain both LF
and high-frequency (HF) components. They can thus
be split into two contributions:

�i � �i
B � �i�, (5)

where �i
B and �i� are the LF and HF components,

respectively.1,3 If all LF proportions are modeled by a
set of appropriate basis functions �i���,

ln I0(�) � ln g(�) � �
i

�i
B(�)SCDi � �

j
aj�j(�), (6)

Eq. (4) becomes

ln I(�) � �
j

aj�j(�)
Ç

LF

� �
i

�i�(�)SCDi

Ç
HF

, (7)

which is linear in the unknown quantities aj and
SCDi and can be solved by a linear least-squares
method. The HF part is defined as the differential
optical density D���� (see Fig. 1). This approach is
known as DOAS.

In practice, Eq. (7) has to be modified because the
wavelength mapping between the absorption cross
sections ���� and the light intensity measured by the
instrument I��� are not known exactly or can change
because of changes in the spectrometer response dur-
ing use. We can account for the wavelength mapping
by introducing an additional shift and squeeze pa-
rameter in the argument of the absorption cross sec-
tion �����→����� � ��. This step transforms Eq. (7)
from a linear to a nonlinear optimization problem.

3. Air-Mass Factor Concept

The resulting SCDs represent the concentration of
the specified trace gas integrated over all possible
photon paths. Therefore this value is a function of
solar zenith angle (SZA) and other parameters such
as cloud fraction or ground albedo. To become inde-
pendent of the viewing geometry, the SCD is trans-
formed into vertical column densities (VCDs). This
value represents the concentration integrated along a
vertical column through the atmosphere. For this
transformation the concept of AMFs4 has proved to be
useful. The AMF is defined as the quotient of SCD
and VCD:

AMF(SZA) �
SCD(SZA)

VCD ⇔ VCD �
SCD(SZA)
AMF(SZA).

(8)

Equation (8) suggests that this new value, the VCD,
has become independent of the SZA and other mea-
surement conditions, so it can be compared with
measurements at different times and locations.
However, this is not exactly true as there is a de-
pendence of the AMF on the VCD that causes a
nonlinear relation. This nonlinearity, however, can
be neglected for weak absorbers, e.g., NO2. For the
calculation of the AMF, knowledge of the SZA, the
line of sight, the ground albedo, clouds and aerosols,
as well as profile information of all strong absorbing
trace gases, mainly O3, and in particular profile
information of the trace gas under investigation is
needed. The latter is usually not known and re-
quires a priori assumptions or additional measure-
ments or calculations. The AMF can also vary with
wavelength. If this variation is small enough, the
center of the used wavelength interval can be
picked for AMF calculation. For stronger variations
of the AMF, selecting the smallest AMF in the
DOAS fitting window tends to reduce uncertain-
ties.2 If the AMF shows a significant wavelength
dependence, we can account for this effect by in-
cluding the wavelength-dependent AMFs in the ab-

Fig. 1. Correlation of the different parameters used for DOAS.
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sorption cross section. This modified DOAS version
allows for the direct fitting of VCDs. We can per-
form the calculation of the AMF, for example, by
solving the radiative transfer equation numerically
or by simulating the extinction events in the atmo-
sphere using a Monte Carlo model. This part of a
DOAS evaluation is often the largest error source.

4. Differential Optical Absorption Spectroscopy
Operator Formalism

In the following, an operator concept is used to de-
scribe the DOAS evaluation process. We use the well-
known operator definition as functions that map a
function on another function, so they can be used to
describe the change in the spectrum f��� on the way
through the atmosphere and the detector.

When using the Beer–Lambert law and the al-
ready introduced variables to model the extinctions
in the atmosphere, we can write the measured spec-
trum as

I(�) � I0(�)g(�)exp���
i

�i�(�i� � �i)SCDi�, (9)

where � and � are shift and squeeze parameters.
However, there are still some operations missing that
also modify the signal. The spectrum is convoluted
with the aperture function (see below) and is dis-
cretized. This entails the need for an interpolation
algorithm. To obtain a better overview, an operator
notation is used to describe all these manipulations of
the signal. In the following, f��� stands for a general
function, or spectra in this case.

Y Discretizing operator:

�(m, b)f(�) � �
i

	(mi � b)f(�). (10)

This operator maps a continuous signal on dis-
crete lattice points (pixels) and is realized by a mul-
tiplication with a Dirac delta comb.5 These
equidistant points are given by mi � b where m is the
difference between the center wavelengths, b is the
wavelength offset, and i is the pixel number. These
two parameters are considered to stay constant, so
they do not have to be fitted in the DOAS optimi-
zation.

Y Instrument’s optical function:

�f(�) � a(�) � f(�) ��
�





a(� � ��)f(��)d��. (11)

This operator describes the characteristics of
the spectrometer. This is influenced by the instru-
ment’s slit function, the properties of a predisperser
prism if present and other optical devices, and the
sensitivity of the photodiodes. This operator has no
parameter that has to be fitted.

Y Wavelength registration (shift �h and squeeze
�q):

�h(�)f(�) � f(� � �), (12)

�q(�)f(�) � f(��), (13)

�f(�) � �h�qf(�) � f(�� � �). (14)

This operator should compensate possible
changes or errors in the wavelength calibration. The
two parameters � (shift) and � (squeeze) are nonlin-
ear fitting parameters with respect to f���. This op-
erator can also include calibration corrections of
higher order if needed.

Y High- and low-pass filter:

�(n)f(�) � Pn(�), (15)

�(n)f(�) � (1 � �)f(�) � f(�) � Pn(�). (16)

These are bandpass filters. Frequently a poly-
nomial pn��� � �0

n pk�
k is used to model the broad-

band structure. These �n � 1� parameters �p0. . .pn�
are linear fitting parameters.

Y Interpolation:

�f(�) � b(�) � f(�) �� b(� � ��)f(��)d��. (17)

This interpolation is necessary to transform a
spectrum from a discrete representation (e.g., after
application of the discretization operator �) to a con-
tinuous spectrum. This is a nontrivial task when
there is a shift and squeeze operator involved; see
also Subsection 5.C.

Y Logarithm and exponential function:

�f(�) � exp�f(�)�, (18)

�f(�) � ��1f(�) � ln f(�). (19)

These functions are written in this notation to
provide a coherent description.

Y Scale operator:

�c(a)f(�) � af(�). (20)

This is a scaling of the function and gives one
linear fitting parameter. This operator can be re-
placed if a nonlinear scaling is needed, e.g., if satu-
ration effects must be considered.

For further simplification, the scaling and the sum-
mation of the different absorption cross sections are
defined as

�(�) � ��
i

�c(Si)�i�(�) � ��
i

Si�i�(�), (21)

and the scaled sum of the solar spectrum I0 and the
Ring spectrum R is named
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IS � �c(SI0)I0(�) � �c(SR)R(�), (22)

where SIo and SR are the fitting parameter of the
Fraunhofer and Ring spectra.

Using the introduced notation we can formulate
the measurement process as follows:

I(�) � �(m, b)��(�, �)g(�)IS��(�). (23)

Because all described operators, except � and �, are
linear, they commutate with the scale operator and
can be exchanged with the summation. Therefore all
the following considerations refer to all trace gases
represented by ����. Also, for simplification the same
shift and squeeze operator is used for all trace gas
reference spectra.

In the following, the transformation of the modeled
spectrum on the path of the radiation through the
atmosphere and the instrument is described (see Fig.
2). After passing the atmosphere and being influ-
enced by the different extinction processes, the in-
coming light is described by g���IS�����. As ����
includes reference cross sections, a possibly wrong
wavelength calibration has to be corrected by the
shift and squeeze operator ���, �� [see Eq. (14)]. Then
the signal experiences the influence of the instru-
ment’s optics described by the operator � [see Eq.
(11)]. Subsequently the continuous signal is sampled
on the detector array described by the operator
��m, b� where m and b are intrinsic parameters of
the instrument and do not need to be considered in
the following formulas. However, this is not exactly
the function that is used for the fitting process with
DOAS. The considerations described in Section 2 are
now repeated with this new notation, describing the
actual DOAS measurement and evaluation process,
this time including convolution and sampling.

First the logarithm operator is applied on both
sides of Eq. (23):

�I(�) � �
����g(�)IS��(�)��
� ����g(�) � ����	S��(�). (24)

In the next step in a typical DOAS evaluation, the
relation �� � 1 � unity operator is used. This can be
exploited only when either � or � commutes with the
operators �, �, and �. With the usual definition
(Poisson brackets) �A, B� � AB � BA, this means

��, �� � 0, ��, �� � 0, ��, �� � 0, (25)

or

��, �� � 0, ��, �� � 0, ��, �� � 0. (26)

This can be easily shown to hold for � and �. How-
ever, the commutator of � and �, and therefore also
the commutator of � and �, does not vanish in gen-
eral. Nevertheless this effect is neglected here for
further calculations. As �� is applied on IS�� it can

also be commuted by means of neglecting the com-
mutator ����, �IS�, which of course is also not zero.
This effect is called the I0 effect6 and is described in
Subsection 5.A. It can be shown that it is possible to
correct the cross sections f in a way that the influence
of this commutator is reduced, which is called the I0
correction.6 Thus Eq. (24) becomes

Fig. 2. Overview of the formation of the signal, the processes in
the atmosphere, the influences of the measurement on the signal,
and the DOAS optimization process.
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�I(�) � ����g(�) � ����	S � ������(�)
� ����g(�) � ����	S � ����(�). (27)

As we are interested in the HF part of the spec-
trum, we add a unity operator written in the form
1 � � � � that separates the signal into the HF and
LF part:

�I(�) � (� � �)����g(�) � (� � �)(����	S(�)
� (� � �)����(�)

� ������g(�) � ����(�) � ����	S(�)�
� �����g(�) � �����	S(�) � �����(�).

(28)

Now we make an assumption that the initial inten-
sity and the influence of scattering, expressed by g���,
is fully represented by broadband structures, i.e., the
term �����g��� can be neglected. This is the main
principle of DOAS. The advantage of using the low-
pass filter � is that only n � 1 linear polynomial
coefficients have to be fitted and it is not necessary to
model g, the LF part of IS, or the associated shift and
squeeze parameter.

This is still not the form we can use for the fitting
process as the reference spectra are not all known as
a continuous high-resolved function, especially the
solar reference that is usually measured with the
spectrometer itself and is therefore influenced by the
aperture function and the sampling. So we need the
term ��IS��� and ������ in the formula. This can be
achieved when we add the commutator of � and �,
but it has to be investigated if this commutator van-
ishes. As it does not, this analysis is described in
Subsection 5.B. Now we obtain

�I(�) � T�. . .� � �����IS(�) � �����(�). (29)

The next comutator would be ��,��, but this one does
not vanish because the right-hand side of � must be
a continuous function, so ������ would make no
sense. When the shift and squeeze operator should be
applied to a discrete function, this function has to be
interpolated for intermediate grid points first. This
can be done by use of the interpolation operator �. So
we insert �� in the formula:

�I(�) � ��. . .� � �������IS(�) � �������(�)
� ��. . .� � �������IS(�) � �������(�).

(30)

Again this operation causes an uncertainty that is
called the undersampling effect. If the sampling fre-
quency of � is below the Nyquist frequency, the sig-
nal cannot be fully reconstructed. The influence of
this effect is described in Subsection 5.C.

In most implementations the high-pass filtering
� is also neglected, which does not influence the fit
result because this means only a change in the
fitted polynomial. In addition, ln�IS� � ln�SIoI0��� �

SRR���� is replaced by SIo ln�I0���� � SRR���	I0���,
which is an approximation that preserves linearity
for the fitting coefficients. So finally we obtain

�I(�) � �(n0, n1, n2, n3)�. . .�
� �c(SIo)�(�0, �0)����I0�(�)
� �c(SR)�(�1, �1)��
(�)

� �
i

��(�1, �1)����c(Si)�i�(�), (31)

with the linear fitting parameters n0, n1, n2, n3, Si, SIo,
SR and the nonlinear vi, �i.

5. Sample Applications of the Operator Concept

Now the above described operator notation is ex-
ploited to describe accompanying errors when we ap-
ply DOAS. Most of the resulting errors arise from the
fact that DOAS assumes a different sequence of
transformations of the spectrum than actually occur.

As an application sample we used a DOAS evalu-
ation of data from the Global Ozone Monitoring Ex-
periment7 (GOME) aboard the European Space
Agency’s second European Remote Sensing Satellite
(ERS-2). In this case solar radiation scattered from
the atmosphere or reflected from the ground is ana-
lyzed by the observing instrument.

A. I0 Effect

Because of the large number of Fraunhofer lines, the
intensity of the solar spectrum varies strongly with
wavelength, as do the strong absorbers in the terres-
trial atmosphere. Thus the approximations that lead
to Eq. (31) are not fulfilled. In particular, for trace
gases also showing narrow spectral structures, the
absorptions found in measured atmospheric spectra
cannot be fitted properly by the respective cross sec-
tions (which are usually measured in the laboratory
by a light source with a smooth spectrum, e.g., a
blackbody radiator). Because these errors arise from
the spectral structures of the I0 spectrum, it is usually
referred to as the solar I0 effect.6,8,9

This effect can be described by the nonvanishing
commutator [����SCD�, �I0]. The question is, under
which conditions can this effect be neglected? To an-
swer this question, the following calculation can be
made:

��(��I0SCD), �I0�(�) � 0,

⇔����I0(�)SCD��I0(�) � �I0(�)����I0(�)SCD� � 0,

⇔��I0(�)SCD � ��I0(�)����I0(�)SCD����I0(�),

⇔�I0(�) � �
1

SCD ln
�
I0 exp���I0(�)SCD��

�I0
. (32)

The last line gives an equation for the combination of
absorption cross sections and the solar I0 spectrum for
which the solar I0 effect can be neglected. The I0 effect
has to be considered in the case when strong Fraun-
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hofer lines or atmospheric absorbers like O3 have to be
removed to measure the underlying weak absorptions
of other trace gases. The solar I0 effect (i.e., the I0 effect
due to Fraunhofer lines) can be accounted for by use of
the so-called I0-corrected cross sections.

This correction was first introduced by Johnston.10

We can obtain the corrected cross section by applying
the commutation:

����corr(�)SCD��I0(�) � �I0(�)����orig(�)SCD�

⇔ �corr(�) � �
1

SCD ln
�
I0 exp���orig(�)SCD��

�I0
. (33)

Of course the SCD of the trace gas is unknown; how-
ever, we can iterate Eqs. (33) by first determining
SCD0 from an evaluation without I0 correction and
then apply the new fitted SCD using the corrected
cross section till the cross sections converge. It should
be mentioned that the commutator is applied to the
sum of cross sections since normally more than one
trace species is fitted and therefore the I0 correction
would have to be done simultaneously, which is not
possible because Eqs. (32) are not linear in �.

In Fig. 3 the influence of the I0-corrected effect on
the original NO2 reference spectrum is shown. As

Eqs. (32) are similar to a normalized convolution, the
correction is similar to a smoothing of the spectrum.
For the GOME DOAS analysis, for example, this ef-
fect can be suppressed by means of smoothing the
spectra in advance.

B. Commutator of Shift and Squeeze and Folding

As mentioned in Section 4, when we apply the DOAS
technique, the commutator of the shift and squeeze
operator � and the convolution with the instrument
function � are neglected. As � is by definition a
shift-invariant filter, only the commutator ��c, �� has
to be analyzed.

Within the scope of most DOAS applications the
squeeze parameter � can be assumed to be close to
unity: � � 1 � � with � �� 1 (in practice only �

 0.01 occurs).

We start with the operation �c����:

�c(�)�f(x) � (h � f)(�x)

��h(�x � x�)f(x�)dx�

���h��(x � �)�f(��)d�, (34)

where h�x� is the convolution kernel of �. Now the
term h���x � ��� can be expanded in a Taylor series in
� around one.12 Because � � 1, the series can be cut
after the term of order one assuming a sufficient
smooth function h. Then Eq. (34) becomes

�c(�)�f(x) � �� �h(x � �) � (� � 1)

� (x � �)h�(x � �)�f(��)d�

� �h(x) � f(�x) � �(� � 1)

� � (x � �)h�(x � �)f(��)d�

� �h(x) � f(�x) � �� (x � �)h�

� (x � �)f(��)d�. (35)

Approximation (35) shows that the introduced error
coming from the commutation of � and �c is domi-
nated by convolution of the squeezed signal with a
new kernel xh��x�. To analyze this more closely, the
filter kernel h�x� is replaced by a Gauss function
h�x� � �� 
 1	�2�� exp��1	2�x	��2�. Then we can
calculate the first and second derivative:

d
dx h(x) � �

x

�2 h(x), (36)

d2

dx2 h(x) � �x2

�4 �
1

�2�h(x). (37)

Fig. 3. Influence of the I0 effect on the reference spectrum of NO2.
(a) The high-resolved original spectrum (dark curve) and the
I0-corrected spectrum in (light curve). (b) The original (solid curve),
the I0-corrected spectrum (dashed curve), and the smoothed signal
(dotted curve) in GOME resolution (�� applied). (c) Deviation of
the I0-corrected (dashed curve) and the smoothed (dotted curve)
spectrum to the original spectrum and the difference between the
I0-corrected and the smoothed spectrum (solid curve) (from
Beirle11).
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Accordingly the new filter kernel xh��x� can be writ-
ten as

xh�(x) � �
x

�2 h(x)x,

���2h�(x) � h(x). (38)

Combining Eqs. (35) and (38) results in

(h � f)(�x) � �h(x) � f(�x) � �h(x) � f(�x)

� ��2�h�(x � �)f(��)d�

�h(x) � f(�x) � ��2�h�(x � �)f(��)d�

�h(x) � f(�x) � ��2�h(x � �)�2f�(��)d�

�h(x) � f(�x) � ��2h(x) � f�(�x)

��c(�)��c(�)f(x) � ��2�h(x � �)�2f�(��)d�

�h(x) � f(�x) � ��2h(x) � f�(�x),

)��c, ��f(x) � ��2h(x) � f�(�x). (39)

Therefore the error introduced by the commutation of
folding and squeezing is proportional to the second
derivative of the squeezed signal folded with the in-
strument’s optical function. For the case of a highly
localized signal, e.g., emission or absorption bands,
the effect is shown in Fig. 4. It can be observed that

the function that is used for DOAS underestimates
the physically correct line in the full width at half-
maximum (FWHM), which leads to an overestima-
tion of the fitted slant column density and a
contribution to the residuum with roughly twice the
frequency of the reference spectrum.

The intensity of this effect is proportional to �2,
which means that it is stronger for less localized in-
strument functions. The ideal instrument function is
a � function and this effect vanishes. For example, the
GOME instrument � is around 1.5; and as typical
values for � are around 1%, the described influence
can be neglected for the DOAS calculation and can be
included in the subsequent error analysis. The influ-
ences of the described effect can be further sup-
pressed by means of smoothing the incoming signal
beforehand.

C. Spectral Undersampling

In Eq. (30) the operator ����� � ��� was applied
to take into account that the measured solar reference
spectrum is available only on a discrete wavelength
grid. A spectrum can be reconstructed only when the
sampling condition of the Nyquist theorem is met. This
is not always the case (e.g., for the GOME instrument
because the solar spectrum has structures with much
higher frequencies than GOME can measure). Since
the interpolation reproduces the signal at the grid
points, this undersampling effect appears only when
there is a shift or squeeze of the wavelength mapping
involved while different measured spectra are com-

Fig. 4. Resulting error curve after ��c, �� is applied to a Gaussian
signal [see Eq. (39)]. The instrument’s optical function was also
modeled by a Gaussian function with �h � 0.5, and the squeeze
parameter was chosen as � � 1.1, which is exaggerated to empha-
size this effect. The physically correct operation ���0.0, 1.1� is
shown as a dotted curve; the numerically used operation
��0.0, 1.1�� is shown as a solid curve. The dashed curve shows the
difference between these two curves ��c, �� (left scale).12

Fig. 5. Demonstration of the undersampling effect. (a) Residuum
of a NO2 fit of GOME spectrum 775 from 20 August 1997 and the
calculated undersampling correction �����I0 � ���I0. The �2 is
4.3 � 10�4, and the fitted NO2 absorption of this fit is ��3.86
� 2.45�1015 with a shift of 0.0070 nm. (b) The reduced residuum
after the undersampling correction is applied. The �2 reduces to
1.4 � 10�4, and the NO2 absorption slightly changed to ��3.84
� 1.41�1015 with a shift of 0.0060 nm. (c) Fit result of the same
spectrum without the described undersampling correction but with
smoothed spectra (from Beirle11).
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pared. The undersampling effect can be analyzed with
the operator ����� � ��� applied to a high-
resolved solar spectrum. The results can be seen in Fig.
5. It can be observed that the result of this calculation
is similar to the residuum of the DOAS fit. With this
spectrum used as an additional cross section, the new
residuum can be reduced. However, the effect on the
NO2 fit result is small. The �2 reduces from 4.3
� 10�4 to 1.4 � 10�4 whereas the NO2 VCD changes
only from ��3.86 � 2.45�1015 molecules	cm2 to
��3.84 � 1.41�1015 molecules	cm2. A reduction of the
NO2 error in the same order of magnitude can be
achieved by a preceding smoothing of the references,
which can be expressed when � is replaced by � in Eq.
(28), where � is a bandpass filter that damps LFs and
HFs. This frequency clipping can also be achieved by
use of a less localized instruments function.

Since the operator ����� � ��� can be used to
measure the undersampling effect separately from
other error sources, it is a helpful tool for the design of
new instruments.

6. Conclusion

The DOAS formalism described in this paper is a new
way to describe the basic assumptions that are nec-
essary for a DOAS measurement. These are simpli-
fying assumptions about the influence of extinction
processes in the atmosphere and the measuring pro-
cess on the spectral signal. Furthermore this formal-
ism allows one to differentiate possible error sources
of the DOAS method and provides tools to reduce
these errors. Use of operators to describe a DOAS
measurement leads directly to the well-known I0 ef-
fect, allows one to separate and visualize the under-
sampling effect, and also allows one to discover the
effect of the nonvanishing commutator of squeezing
and folding.
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